Big Bang

From Nordan Symposia
(Redirected from Big bang)
Jump to navigationJump to search

Lighterstill.jpg

The-Universe-Beyond-the-Big-Bang-Documentary.jpg

Definition

Description

The Big Bang theory is the prevailing cosmological model that describes the early development of the Universe. According to the theory, the Big Bang occurred approximately 13.798 ± 0.037 billion years ago, which is thus considered the age of the universe. At this time, the Universe was in an extremely hot and dense state and began expanding rapidly. After the initial expansion, the Universe cooled sufficiently to allow energy to be converted into various subatomic particles, including protons, neutrons, and electrons. Though simple atomic nuclei formed within the first three minutes after the Big Bang, thousands of years passed before the first electrically neutral atoms formed. The majority of atoms that were produced by the Big Bang are hydrogen, along with helium and traces of lithium. Giant clouds of these primordial elements later coalesced through gravity to form stars and galaxies, and the heavier elements were synthesized either within stars or during supernovae.

The Big Bang is the scientific theory that is most consistent with observations of the past and present states of the universe, and it is widely accepted within the scientific community. It offers a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements, the cosmic microwave background, large scale structure, and the Hubble diagram. The core ideas of the Big Bang—the expansion, the early hot state, the formation of light elements, and the formation of galaxies—are derived from these and other observations. As the distance between galaxies increases today, in the past galaxies were closer together. The consequence of this is that the characteristics of the universe can be calculated in detail back in time to extreme densities and temperatures, while large particle accelerators replicate such conditions, resulting in confirmation and refinement of the details of the Big Bang model. On the other hand, these accelerators can only probe so far into high energy regimes, and astronomers are prevented from seeing the absolute earliest moments in the universe by various cosmological horizons. The earliest instant of the Big Bang expansion is still an area of open investigation. The Big Bang theory does not provide any explanation for the initial conditions of the universe; rather, it describes and explains the general evolution of the universe going forward from that point on.

Georges Lemaître first proposed what became the Big Bang theory in what he called his "hypothesis of the primeval atom". Over time, scientists built on his initial ideas to form the modern synthesis. The framework for the Big Bang model relies on Albert Einstein's general relativity and on simplifying assumptions such as homogeneity and isotropy of space. The governing equations were first formulated by Alexander Friedmann and similar solutions were worked on by Willem de Sitter. In 1929, Edwin Hubble discovered that the distances to far away galaxies were strongly correlated with their redshifts—an idea originally suggested by Lemaître in 1927. Hubble's observation was taken to indicate that all very distant galaxies and clusters have an apparent velocity directly away from our vantage point: the farther away, the higher the apparent velocity, regardless of direction. Assuming that we are not at the center of a giant explosion, the only remaining interpretation is that all observable regions of the universe are receding from each other.

While the scientific community was once divided between supporters of two different expanding universe theories—the Big Bang and the Steady State theory, observational confirmation of the Big Bang scenario came with the discovery of the cosmic microwave background radiation in 1964, and later when its spectrum (i.e., the amount of radiation measured at each wavelength) was found to match that of thermal radiation from a black body. Since then, astrophysicists have incorporated observational and theoretical additions into the Big Bang model, and its parametrization as the Lambda-CDM model serves as the framework for current investigations of theoretical cosmology.[1]

See also