Charge
Charge is the fundamental property of any matter that exhibit electrostatic attraction or repulsion over other matter. Electric charge is a characteristic property of many subatomic particles. The charges of free-standing particles are integer multiples of the elementary charge e; we say that electric charge is quantized. Michael Faraday, in his electrolysis experiments, was the first to note the discrete nature of electric charge. Robert Millikan's oil-drop experiment demonstrated this fact directly, and measured the elementary charge.
By convention, the charge of an electron is −1, while that of a proton is +1. Charged particles whose charges have the same sign repel one another, and particles whose charges have different signs attract. Coulomb's law quantifies the electrostatic force between two particles by asserting that the force is proportional to the product of their charges, and inversely proportional to the square of the distance between them.
The charge of an antiparticle equals that of the corresponding particle, but with opposite sign. Quarks have fractional charges of either −1⁄3 or +2⁄3, but free-standing quarks have never been observed (the theoretical reason for this fact is asymptotic freedom).
The electric charge of a macroscopic object is the sum of the electric charges of the particles that make it up. This charge is often zero, because matter is made of atoms, and atoms all have equal numbers of protons and electrons. More generally, in every molecule, the number of anions (negatively charged atoms) equals the number of cations (positively charged atoms). When the net electric charge is non-zero and motionless, the phenomenon is known as static electricity. Even when the net charge is zero, it can be distributed non-uniformly (e.g., due to an external electric field or to molecular motion), in which case the material is said to be polarized. The charge due to polarization is known as bound charge, while the excess charge brought from outside is called free charge. The motion of charged particles (especially the motion of electrons in metals) in a given direction is known as electric current.[1]