Focus

From Nordan Symposia
(Redirected from Focalized)
Jump to navigationJump to search

Lighterstill.jpg

Focalpointflame180.jpg

In geometrical optics, a focus, also called an image point, is the point where light rays originating from a point on the object converge [1]. Although the focus is conceptually a point, physically the focus has a spatial extent, called the blur circle. This non-ideal focusing may be caused by aberrations of the imaging optics. In the absence of significant aberrations, the smallest possible blur circle is the Airy disc, which is caused by diffraction from the optical system's apertur]. Aberrations tend to get worse as the aperture diameter increases, while the Airy circle is smallest for large apertures.

An image, or image point or region, is in focus if light from object points is converged almost as much as possible in the image, and out of focus if light is not well converged. The border between these is sometimes defined using a circle of confusion criterion.

For lessons on the topic of Focus, follow this link.

Focal Point

A principal focus or focal point is a special focus:

  • For a lens, or a spherical or parabolic mirror, it is a point onto which collimated light parallel to the axis is focused. Since light can pass through a lens in either direction, a lens has two focal points - one on each side. The distance in air from the lens or mirror's principal plane to the focus is called the focal length.
  • Elliptical mirrors have two focal points: light that passes through one of these before striking the mirror is reflected such that it passes through the other.
  • The focus of a hyperbolic mirror is either of two points which have the property that light from one is reflected as if it came from the other.

A diverging (negative) lens, or a convex mirror does not focus a collimated beam to a point. Instead, the focus is the point from which the light appears to be emanating, after it travels through the lens or reflects from the mirror. A convex parabolic mirror will reflect a beam of collimated light to make it appear as if it were radiating from the focal point or conversely, reflect rays directed toward the focus as a collimated beam. A convex elliptical mirror will reflect light directed towards one focus as if it were radiating from the other focus, both of which are behind the mirror. A convex hyperbolic mirror will reflect rays emanating from the [[focus focal point in front of the mirror as if they were emanating from the focal point behind the mirror. Conversely, it can focus rays directed at the focal point that is behind the mirror towards the focal point that is front of the mirror as in a Cassegrain telescope.

In geometry, the foci, ˈfoʊsaɪ (singular focus), are a pair of special points used in describing conic sections. The four types of conic sections are the circle, parabola, ellipse, and hyperbola.

The focus has two equivalent defining properties; and they always fall on the major axis of symmetry of the conic. The simpler depends on the type of conic:

  • In an ellipse, the sum of the distances from any point on the ellipse to the two foci is a constant (which is always the length of the major axis of the ellipse).
  • In a circle, there is only one focus, the center of the circle, and all the points of the circle are equidistant from it. (This can be viewed a special case of the above, with a circle being an ellipse with two foci at the same point; the sum of the distances is the diameter.)
  • In a hyperbola, the difference of the distances is always constant.
  • A parabola also only has one focus (although it is sometimes useful to speak of a focus at infinity); but there is a line called the directrix such that the distance from any point of the parabola to the focus is equal to the (perpendicular) distance from the point to the directrix.

The rule for the parabola can be generalized to other conics, and this is the other defining property: A conic section can be defined as the set of points such that the ratio of distance to its focus to the distance to the corresponding directrix is a constant, called the eccentricity. Even in the case of two foci, the described set, applied on a single focus-directrix combination, is the whole conic section.

The circle has eccentricity 0, and the directrix is a line at infinity. The focus-directrix property is thus true of the circle, but it is also true of every other point on the plane.

Conics in projective geometry

It is also possible to describe all the conic sections as loci of points that are equidistant from a single focus and a single, circular directrix.

For the ellipse, both the focus and the center of the directrix circle have finite coordinates and the radius of the directrix circle is greater than the distance between the center of this circle and the focus; thus, the focus is inside the directrix circle. The ellipse thus generated has its second focus at the center of the directrix circle.

For the parabola, the center of the directrix moves to the point at infinity. The directrix 'circle' becomes a curve with zero curvature, indistinguishable from a straight line. The two arms of the parabola become increasingly parallel as they extend, and 'at infinity' become parallel; using the principles of projective geometry, the two parallels intersect at the point at infinity and the parabola becomes a closed curve (elliptical projection).

To generate a hyperbola, the radius of the directrix circle is chosen to be less than the distance between the center of this circle and the focus; thus, the focus is outside the directrix circle. The arms of the hyperbola approach asymptotic lines and the 'right-hand' arm of one branch of a hyperbola meets the 'left-hand' arm of the other branch of a hyperbola at the point at infinity; this is based on the principle that, in projective geometry, a single line meets itself at a point at infinity. The two branches of a hyperbola are thus the two (twisted) halves of a curve closed over infinity.

In projective geometry, all conics are equivalent in the sense that every theorem that can be proved for one conic section applies to all the others.

Astronomical significance

In the gravitational two-body problem, the orbits of the two bodies are described by two overlapping conic sections each with one of their foci being coincident at the center of mass (barycenter).

Quote

"You cannot truly love your fellows by a mere act of the will. Love is only born of thoroughgoing understanding of your neighbor's motives and sentiments. It is not so important to love all men today as it is that each day you learn to love one more human being. If each day or each week you achieve an understanding of one more of your fellows, and if this is the limit of your ability, then you are certainly socializing and truly spiritualizing your personality. Love is infectious, and when human devotion is intelligent and wise, love is more catching than hate. But only genuine and unselfish love is truly contagious. If each mortal could only become a focus of dynamic affection, this benign virus of love would soon pervade the sentimental emotion-stream of humanity to such an extent that all civilization would be encompassed by love, and that would be the realization of the brotherhood of man."[2]

References

"Standard Microscopy Terminology". University of Minnesota Characterization Facility website.